Change Password

Please enter the password.
Please enter the password. Between 8-64 characters. Not identical to your email address. Contain at least 3 of: uppercase, lowercase, numbers, and special characters.
Please enter the password.
Submit

Change Nickname

Current Nickname:
Submit

Apply New License

License Detail

Please complete this required field.

  • Ultipa Graph V4

Standalone

Please complete this required field.

Please complete this required field.

The MAC address of the server you want to deploy.

Please complete this required field.

Please complete this required field.

Cancel
Apply
ID
Product
Status
Cores
Applied Validity Period(days)
Effective Date
Excpired Date
Mac Address
Apply Comment
Review Comment
Close
Profile
  • Full Name:
  • Phone:
  • Company:
  • Company Email:
  • Country:
  • Language:
Change Password
Apply

You have no license application record.

Apply
Certificate Issued at Valid until Serial No. File
Serial No. Valid until File

Not having one? Apply now! >>>

Product Created On ID Amount (USD) Invoice
Product Created On ID Amount (USD) Invoice

No Invoice

v5.0
Search
    English
    v5.0

      Node2Vec Walk

      HDC

      Overview

      Diverging from the classic random walk, the Node2Vec Walk is a biased random walk which can explore neighborhoods in a BFS as well as DFS fashion. Please refer to the Node2Vec algorithm for details.

      Considerations

      • Self-loops are also eligible to be traversed during the random walk.
      • The Node2Vec Walk algorithm ignores the direction of edges but calculates them as undirected edges.

      Example Graph

      To create this graph:

      // Runs each row separately in order in an empty graphset
      create().edge_property(@default, "score", float)
      insert().into(@default).nodes([{_id:"A"},{_id:"B"},{_id:"C"},{_id:"D"},{_id:"E"},{_id:"F"},{_id:"G"},{_id:"H"},{_id:"I"},{_id:"J"},{_id:"K"}])
      insert().into(@default).edges([{_from:"A", _to:"B", score:1}, {_from:"A", _to:"C", score:3}, {_from:"C", _to:"D", score:1.5}, {_from:"D", _to:"C", score:2.4}, {_from:"D", _to:"F", score:5}, {_from:"E", _to:"C", score:2.2}, {_from:"E", _to:"F", score:0.6}, {_from:"F", _to:"G", score:1.5}, {_from:"G", _to:"J", score:2}, {_from:"H", _to:"G", score:2.5}, {_from:"H", _to:"I", score:1}, {_from:"I", _to:"I", score:3.1}, {_from:"J", _to:"G", score:2.6}])
      

      Creating HDC Graph

      To load the entire graph to the HDC server hdc-server-1 as hdc_node2vec_walk:

      CALL hdc.graph.create("hdc-server-1", "hdc_node2vec_walk", {
        nodes: {"*": ["*"]},
        edges: {"*": ["*"]},
        direction: "undirected",
        load_id: true,
        update: "static",
        query: "query",
        default: false
      })
      

      hdc.graph.create("hdc_node2vec_walk", {
        nodes: {"*": ["*"]},
        edges: {"*": ["*"]},
        direction: "undirected",
        load_id: true,
        update: "static",
        query: "query",
        default: false
      }).to("hdc-server-1")
      

      Parameters

      Algorithm name: random_walk_node2vec

      Name
      Type
      Spec
      Default
      Optional
      Description
      ids []_id / / Yes Specifies nodes to start random walk by their _id; computes for all nodes if it is unset.
      uuids []_uuid / / Yes Specifies nodes to start random walk by their _uuid; computes for all nodes if it is unset.
      walk_length Integer ≥1 1 Yes Depth of each walk, i.e., the number of nodes to visit.
      walk_num Integer ≥1 1 Yes Number of walks to perform for each specified node.
      p Float >0 1 Yes The return parameter; a larger value reduces the probability of returning.
      q Float >0 1 Yes The in-out parameter; it tends to walk at the same level when the value is greater than 1, otherwise it tends to walk far away.
      edge_schema_property []"<@schema.?><property>" / / Yes Numeric edge properties used as edge weights, summing values across the specified properties; edges without the specified properties are ignored.
      return_id_uuid String uuid, id, both uuid Yes Includes _uuid, _id, or both values to represent nodes in the results.
      limit Integer ≥-1 -1 Yes Limits the number of results returned; -1 includes all results.

      File Writeback

      CALL algo.random_walk_node2vec.write("hdc_node2vec_walk", {
        params: {
          return_id_uuid: "id",
          walk_length: 6,
          walk_num: 2,
          p: 10000, 
          q: 0.0001
        },
        return_params: {
          file: {
            filename: "walks"
          }
        }
      })
      

      algo(random_walk_node2vec).params({
        project: "hdc_node2vec_walk",
        return_id_uuid: "id",
        walk_length: 6,
        walk_num: 2,
        p: 10000, 
        q: 0.0001
      }).write({
        file:{
          filename: 'walks'
      }})
      

      Result:

      _ids
      J,G,F,D,C,E,
      D,C,A,B,A,C,
      F,G,E,C,A,B,
      H,I,I,H,G,F,
      B,A,C,D,F,G,
      A,B,A,B,A,C,
      E,C,E,C,A,B,
      K,
      C,E,F,G,J,G,
      I,I,H,G,F,E,
      G,H,I,I,H,G,
      J,G,F,D,C,E,
      D,C,A,B,A,C,
      F,E,C,D,F,E,
      H,G,H,G,J,G,
      B,A,C,D,F,G,
      A,C,D,F,E,C,
      E,C,E,C,A,B,
      K,
      C,A,B,A,C,D,
      I,H,G,J,G,H,
      G,H,I,I,H,G,
      

      Full Return

      CALL algo.random_walk_node2vec("hdc_node2vec_walk", {
        params: {
          return_id_uuid: "id",
          ids: ['J'],
          walk_length: 6,
          walk_num: 3,
          p: 2000,
          q: 0.001
        },
        return_params: {}
      }) YIELD walks
      RETURN walks
      

      exec{
        algo(random_walk_node2vec).params({
          return_id_uuid: "id",
          ids: ['J'],
          walk_length: 6,
          walk_num: 3,
          p: 2000,
          q: 0.001
        }) as walks
        return walks
      } on hdc_node2vec_walk
      

      Result:

      _ids
      ["J","G","F","D","C","E"]
      ["J","G","J","G","F","D"]
      ["J","G","J","G","H","I"]

      Stream Return

      CALL algo.random_walk_node2vec("hdc_node2vec_walk", {
        params: {
          return_id_uuid: "id",
          ids: ['A'],
          walk_length: 5,
          walk_num: 10,
          p: 1000,
          q: 1,
          edge_schema_property: 'score'
        },
        return_params: {
          stream: {}
        }
      }) YIELD walks
      RETURN walks
      

      exec{
        algo(random_walk_node2vec).params({
          return_id_uuid: "id",
          ids: ['A'],
          walk_length: 5,
          walk_num: 10,
          p: 1000,
          q: 1,
          edge_schema_property: 'score'
        }).stream() as walks
        return walks
      } on hdc_node2vec_walk
      

      Result:

      _ids
      ["A","C","A","D","C"]
      ["A","C","A","C","A"]
      ["A","C","A","D","A"]
      ["A","C","A","C","A"]
      ["A","C","A","D","E"]
      ["A","C","A","D","E"]
      ["A","C","A","B","A"]
      ["A","C","A","D","A"]
      ["A","C","A","C","D"]
      ["A","C","A","C","A"]
      Please complete the following information to download this book
      *
      公司名称不能为空
      *
      公司邮箱必须填写
      *
      你的名字必须填写
      *
      你的电话必须填写