Change Password

Please enter the password.
Please enter the password. Between 8-64 characters. Not identical to your email address. Contain at least 3 of: uppercase, lowercase, numbers, and special characters.
Please enter the password.
Submit

Change Nickname

Current Nickname:
Submit

Apply New License

License Detail

Please complete this required field.

  • Ultipa Graph V4

Standalone

Please complete this required field.

Please complete this required field.

The MAC address of the server you want to deploy.

Please complete this required field.

Please complete this required field.

Cancel
Apply
ID
Product
Status
Cores
Applied Validity Period(days)
Effective Date
Excpired Date
Mac Address
Apply Comment
Review Comment
Close
Profile
  • Full Name:
  • Phone:
  • Company:
  • Company Email:
  • Country:
  • Language:
Change Password
Apply

You have no license application record.

Apply
Certificate Issued at Valid until Serial No. File
Serial No. Valid until File

Not having one? Apply now! >>>

Product Created On ID Amount (USD) Invoice
Product Created On ID Amount (USD) Invoice

No Invoice

v5.0
Search
    English
    v5.0

      Aggregate Functions

      Overview

      An aggregate function performs a calculation on a set of values and returns a single scalar value.

      DISTINCT

      All aggregate functions support the use of the set quantifier DISTINCT to deduplicate values before aggregation.

      Null Values

      Rows containing null values are ignored by all aggregate functions.

      Example Graph

      The following examples run against this graph:

      avg()

      Computes the average of a set of numeric values.

      Syntax avg(<values>)
      Arguments Name Type Description
      <values> Numeric The target values
      Return Type DOUBLE
      find().nodes() as n
      return avg(n.score)
      

      Result:

      avg(n.score)
      7.33333333333333

      collect()

      Collects a set of values into a list.

      Syntax collect(<values>)
      Arguments Name Type Description
      <values> Any The target values
      Return Type LIST
      find().nodes() as n
      return collect(n.title)
      

      Result:

      collect(n.title)
      ["Optimizing Queries","Efficient Graph Search","Path Patterns"]

      count()

      Returns the number of records in the input.

      Syntax count(<values>)
      Arguments Name Type Description
      <values> Any The target values
      Return Type UINT
      find().nodes() as n
      return count(n)
      

      Result:

      count(n)
      3
      uncollect [1, "a", "2", "b3", null] as item
      return count(item)
      

      Result:

      count(item)
      4

      count(DISTINCT)

      You can include the set quantifier DISTINCT in count() to return the number of distinct records in the input.

      uncollect [1, 1, "a", "2", "b3", null] as item
      return count(DISTINCT item)
      

      Result:

      count(DISTINCT item)
      4

      max()

      Returns the maximum value in a set of values.

      Syntax max(<values>)
      Arguments Name Type Description
      <values> Any The target values
      Return Type Numeric
      find().nodes() as n
      return max(n.score)
      

      Result:

      max(n.score)
      9
      uncollect [1, "a", "2.1", "b3"] as item
      return max(item)
      

      Result:

      max(item)
      2

      min()

      Returns the minimum value in a set of values.

      Syntax min(<values>)
      Arguments Name Type Description
      <values> Any The target values
      Return Type Numeric
      find().nodes() as n
      return min(n.score)
      

      Result:

      min(n.score)
      6
      uncollect [1, "a", "2.1", "b3"] as item
      return min(item)
      

      Result:

      min(item)
      0

      stddev_pop()

      Computes the population standard deviation of a set of numeric values.

      stddev_pop( x 1 , ...,  x n ) = 1 n i = 1 n ( x i x ) 2
      Syntax stddev_pop(<values>)
      Arguments Name Type Description
      <values> Numeric The target values
      Return Type Numeric
      find().nodes() as n
      return stddev_pop(n.score)
      

      Result:

      stddev_pop(n.score)
      1.24721912892465

      stddev_samp()

      Computes the sample standard deviation of a set of numeric values.

      stddev_samp( x 1 , ...,  x n ) = 1 n 1 i = 1 n ( x i x ) 2
      Syntax stddev_samp(<values>)
      Arguments Name Type Description
      <values> Numeric The target values
      Return Type DOUBLE
      find().nodes() as n
      return stddev_samp(n.score)
      

      Result:

      stddev_samp(n.score)
      1.52752523165195

      sum()

      Computes the sum of a set of values.

      Syntax sum(<values>)
      Arguments Name Type Description
      <values> Numeric The target values
      Return Type DOUBLE
      find().nodes() as n
      return sum(n.score)
      

      Result:

      sum(n.score)
      22
      Please complete the following information to download this book
      *
      公司名称不能为空
      *
      公司邮箱必须填写
      *
      你的名字必须填写
      *
      你的电话必须填写