Change Password

Please enter the password.
Please enter the password. Between 8-64 characters. Not identical to your email address. Contain at least 3 of: uppercase, lowercase, numbers, and special characters.
Please enter the password.
Submit

Change Nickname

Current Nickname:
Submit

Apply New License

License Detail

Please complete this required field.

  • Ultipa Graph V4

Standalone

Please complete this required field.

Please complete this required field.

The MAC address of the server you want to deploy.

Please complete this required field.

Please complete this required field.

Cancel
Apply
ID
Product
Status
Cores
Applied Validity Period(days)
Effective Date
Excpired Date
Mac Address
Apply Comment
Review Comment
Close
Profile
  • Full Name:
  • Phone:
  • Company:
  • Company Email:
  • Country:
  • Language:
Change Password
Apply

You have no license application record.

Apply
Certificate Issued at Valid until Serial No. File
Serial No. Valid until File

Not having one? Apply now! >>>

Product Created On ID Amount (USD) Invoice
Product Created On ID Amount (USD) Invoice

No Invoice

v5.0
Search
    English
    v5.0

      Vector Index

      Overview

      A vector index is designed to efficiently store and manage high-dimensional vectors (or embeddings), enabling fast retrieval of similar vectors based on a chosen similarity metric. Instead of performing an exhaustive search across all stored vectors, the vector index significantly reduces the search space, making nearest-neighbor retrieval more efficient.

      Vectors and Embeddings

      Vectors can be viewed as an ordered list of numbers. For example, the vector [1, 2] represents a direction from the origin to the point (1, 2) in a two-dimensional space, and the distance (or magnitude) to that point.

      In the context of machine learning and natural language processing (NLP), the term embedding is commonly used when referring vectors. An embedding is a high-dimensional vector that represents data, often with hundreds of dimensions.

      Creating Embeddings

      You can create embeddings for both structured data (e.g., text) and unstructured data (e.g., images, graphs) using various models. Some popular models include:

      • OpenAI: A collection of models to turn text into embeddings.
      • Node2Vec: A model that generates embeddings for graph nodes based on their relationships.
      • ResNet (Residual Networks): A series of models for generating image embeddings.

      Why Embeddings

      Embeddings are often generated by considering the context of the data entity rather than just the data itself. This is especially true for tasks like NLP, where the meaning of a word is influenced by its surrounding context.

      Consider the word "bank", which has multiple meanings depending on the context:

      1. Bank as a financial institution: "I went to the bank to deposit some money."
      2. Bank as the side of a river: "We sat on the bank of the river to watch the sunset."

      This contextual information makes embeddings much more powerful for downstream tasks like semantic search, recommendation and classification.

      Loading Embeddings into Ultipa

      After creating embeddings for entities, they can be imported or stored into Ultipa as properties of type list<float> or list<double>. By creating vector indexes for these properties, you can perform vector searches.

      Vector Search

      Vector search refers to the process of finding vectors that are most similar to a given query vector, using a similarity measure. Ultipa supports the following similarity measures:

      • L2 Distance (Euclidean Distance): Calculates the straight-line distance between two points in a high-dimensional space. This measure is sensitive to the magnitude of the vectors.
      • Cosine Similarity: Measures the cosine of the angle between two vectors, indicating their orientation in space. It is independent of vector magnitude.
      • Inner Product: Computes the dot product between two vectors, often used when the magnitude of the vectors is important.

      Example Graph

      The example graph consists of 10 Book nodes, each containing the properties name, author, summary, and summaryEmbedding. The summaryEmbedding holds the 384-dimensional text embeddings of the summary, generated using the all-MiniLM-L6-v2 model from Hugging Face.

      CREATE GRAPH myGraph { 
        NODE Book ({title string, author string, summary text, summaryEmbedding list<float>})
      } PARTITION BY HASH(Crc32) SHARDS [1]
      

      INSERT (:Book {_id: 'B1', title: 'Pride and Prejudice', author: 'Jane Austen', summary: 'Elizabeth Bennet navigates love and social class in Regency-era England, clashing with the proud Mr. Darcy before realizing their true feelings for each other. The novel explores themes of marriage, reputation, and personal growth with Austen\'s sharp wit.', summaryEmbedding: [-0.016981, -0.042364, 0.065666, 0.038906, 0.014976, 0.031358, 0.096271, -0.074125, -0.015277, 0.018961, -0.104336, 0.028773, 0.044179, -0.003503, -0.051337, 0.126421, -0.015187, -0.027225, 0.028287, 0.002713, -0.026236, 0.032444, 0.019729, 0.04396, -0.044703, -0.094819, 0.059223, 0.030913, -0.039863, 0.009686, -0.01894, 0.030413, 0.006824, 0.010569, -0.012861, 0.017635, 0.027373, 0.021346, 0.007833, 0.006646, -0.06523, -0.0176, -0.020286, 0.032384, -0.021207, -0.015802, -0.016896, -0.027521, -0.024199, -0.03487, 0.011316, 0.009509, -0.070896, -0.069814, 0.025057, 0.129979, -0.058228, 0.010542, 0.032511, -0.018214, 0.028891, -0.008495, 0.063497, 0.02867, 0.016084, 0.096362, -0.035903, 0.103503, -0.031934, -0.034265, 0.022387, -0.039978, 0.025089, -0.047174, 0.022442, -0.031838, -0.046405, -0.064129, -0.080437, -0.054828, -0.131105, -0.001171, 0.073839, 0.051653, 0.009277, -0.022276, 0.030624, -0.10131, -0.037987, -0.015313, -0.070821, -0.0613, -0.015217, 0.070322, -0.025163, 0.00224, 0.017138, -0.009221, -0.042655, 0.0309, -0.029513, 0.049603, -0.08939, 0.05721, -0.006558, -0.06228, -0.001606, -0.028527, 0.023108, -0.071744, 0.03202, -0.032745, -0.034466, -0.022568, 0.057977, -0.0705, 0.017743, 0.029623, 0.063704, 0.039302, 0.0351, 0.098135, -0.13042, -0.029174, -0.046425, -0.043677, 0.019011, 0.0, -0.049401, 0.019659, 0.00434, 0.103655, 0.03646, -0.006406, 0.01709, 0.010093, -0.035342, -0.021223, -0.02989, 0.004757, -0.04085, -0.049541, -0.028237, 0.010764, -0.023065, 0.019279, 0.043719, 0.022844, 0.005614, 0.047042, -0.00966, -0.028841, -0.141512, -0.046094, 0.093529, 0.076752, 0.051903, 0.005952, -0.009119, 0.010468, 0.020529, -0.117752, -0.025551, -0.020633, -0.035827, -0.045041, 0.021877, 0.104439, -0.102344, 0.061173, 0.051902, -0.033153, -0.108546, 0.025007, 0.072691, 0.077366, 0.011611, 0.04351, -0.025391, -0.05113, 0.007496, 0.034405, -0.02956, 0.068544, 0.001138, 0.003294, 0.053225, -0.050753, 0.111305, -0.119559, 0.030768, -0.083323, 0.027577, 0.056574, 0.018864, -0.054351, -0.049986, -0.049595, -0.053463, 0.13749, 0.00749, -0.015237, 0.026897, 0.05586, -0.053209, -0.045824, 0.002495, -0.041811, -0.088512, -0.045982, 0.001083, 0.0257, -0.025021, -0.056821, 0.079298, -0.04138, 0.05842, 0.12725, 0.075797, -0.063705, 0.02849, -0.059318, -0.056288, -0.0, 0.008574, 0.003689, -0.050495, 0.019619, 0.014629, -0.01671, -0.091144, -0.046019, 0.033841, 0.041957, 0.036199, -0.038631, 0.102301, 0.037733, -0.048338, -0.015469, 0.088624, -0.01908, 0.036952, -0.064097, 0.002211, -0.016333, -0.041148, -0.136672, 0.031455, 0.05582, -0.057396, -0.033742, -0.040174, 0.019922, 0.024373, 0.028434, -0.041116, -0.010636, 0.015855, 0.065905, 0.043568, -0.086017, 0.07593, 0.030394, -0.033286, -0.062302, -2.2e-05, 0.03797, 0.023304, 0.035934, 0.004769, 0.031986, 0.037367, 0.08025, 0.008816, 0.075706, 0.018465, -0.045595, 0.039721, -0.06825, 0.077457, 0.014606, -0.020432, 0.001111, -0.046646, 0.029667, -0.053344, 0.022936, -0.049127, 0.09749, -0.117611, 0.009198, 0.027363, 0.013929, -0.059453, -0.024981, -0.014964, -0.052099, -0.072152, -0.029434, 0.064085, -0.061669, -0.025979, 0.044384, -0.024857, -0.029748, 0.03433, 0.025258, -0.068556, -0.01208, 0.012232, 0.037907, -0.008201, -0.011246, -0.010428, -0.021744, 0.024465, -0.051146, 0.089513, -0.0, -0.088108, -0.059916, -0.068388, -0.033385, -0.011911, 0.046535, -0.013162, 0.038588, 0.013721, 0.082723, -0.063084, -0.020575, 0.003376, -0.028997, 0.024753, 0.066644, 0.130634, -0.075558, 0.01607, 0.009222, 0.08584, -0.006819, -0.008291, -0.028557, -0.043678, 0.028515, 0.039927, -0.062592, -0.011772, 0.066762, 0.027508, 0.049087, -0.044781, -0.011181, 0.01947, 0.042389, -0.043233, 0.150881, 0.056146, 0.058995, 0.006498, 0.0312, -0.048804, 0.042909, 0.055467, -0.010208, -0.039895, 0.025032, 0.003819, -0.007193, 0.067929, -0.006023, 0.100482, 0.045188, -0.026133, 0.041239, -0.00594, 0.043054, -0.029386, 0.037435, -0.055699, 0.083548, 0.020668, -0.081702]}),
             (:Book {_id: 'B2', title: '1984', author: 'George Orwell', summary: 'In a dystopian future, Winston Smith struggles under the oppressive rule of Big Brother, where thought control, surveillance, and propaganda dictate every aspect of life. His rebellion leads to devastating consequences, highlighting themes of totalitarianism and free will.', summaryEmbedding: [-0.008621, 0.091217, -0.022469, -0.022307, 0.025421, 0.106667, 0.001754, -0.065709, -0.022435, 0.057827, -0.014686, 0.083507, 0.017244, -0.024383, -0.042809, 0.035961, -0.047049, -0.020921, -0.105624, 0.020044, -0.047525, -0.023805, 0.014186, 0.047439, -0.098367, 0.044126, 0.017014, 0.044188, -0.009684, -0.001128, -0.052091, -0.021865, 0.052238, 8.1e-05, 0.051572, 0.049274, 0.127821, 0.048921, -0.011751, -0.055761, 0.080929, 0.012329, -0.032541, 0.005175, 0.066084, -0.035489, 0.031082, -0.037632, -0.063821, -0.066129, -0.083817, -0.067446, 0.05262, -0.040641, 0.075976, -0.048971, 0.05027, 0.043345, -0.014722, -0.027574, -0.080322, -0.079703, -0.0453, -0.04559, 0.123172, 0.042333, -0.017341, 0.101922, -0.062573, 0.018903, -0.015795, -0.016941, 0.015264, -0.01361, -0.029711, -0.129424, -0.024845, -0.046623, 0.070202, 0.0443, 0.044555, -0.036263, -0.041683, 0.029205, -0.020685, -0.058189, -0.050959, -0.094882, 0.067173, 0.057603, -0.141696, -0.040523, 0.103626, 0.004706, -0.002419, 0.026994, 0.039842, -0.079611, -0.017373, 0.048091, -0.000586, -0.102408, 0.003314, 0.017276, 0.072057, -0.074581, 0.00571, 0.055517, 0.003812, -0.017347, -0.045918, -0.026583, -0.007081, -0.001156, 0.074983, -0.06314, 0.031952, 0.064857, -0.090344, -0.001005, -0.005211, 0.055158, 0.001642, 0.083283, 0.024727, 0.01225, -0.069203, 0.0, 0.058527, -0.06331, -0.026313, 0.106823, 0.020646, 0.066962, -0.014701, 0.012424, -0.048987, 0.016992, 0.030238, 0.009228, -0.001398, 0.003784, 0.008936, -0.02945, -0.10223, 0.00147, 0.057326, -0.004417, 0.037417, 0.039103, -0.065892, -0.049494, -0.01638, -0.058114, 0.00627, -0.021849, 6.9e-05, 0.03128, -0.008536, 0.13667, -0.079108, -0.003364, 0.062429, -0.021096, -0.076557, 0.02552, 0.072538, 0.018936, -0.06582, -0.002364, -0.042559, -0.046163, 0.02353, 0.025484, 0.134463, -0.015504, 0.008163, 0.015497, 0.032764, -0.014837, -0.021536, -0.026372, -0.019168, -0.018369, 0.012288, 0.022915, -0.038598, 0.013136, 0.038327, -0.033941, 0.029572, 0.038635, 0.010302, -0.096252, -0.063117, 0.023227, -0.033092, 0.116314, 0.05231, 0.036388, -0.001562, -0.031798, -0.018992, 0.052904, -0.07524, 0.066415, -0.099247, -0.013089, 0.023965, 0.021162, 0.022265, 0.004833, -0.001407, 0.03795, 0.055859, -0.092378, 0.026872, 0.004792, -0.003908, -0.093358, 0.039128, -0.020318, -0.091551, -0.0, -0.046535, -0.037969, -0.015275, 0.035466, 0.035897, -0.041856, -0.068587, -0.048424, 0.050674, 0.021732, -0.002393, -0.000446, 0.082799, 0.096639, 0.016579, -0.086886, -0.001073, -0.064376, 0.00767, -0.078391, 0.016434, -0.08163, -0.089212, -0.044454, 0.026081, 0.020704, -0.017052, 0.043146, 0.054896, 0.068385, -0.076187, 0.038646, -0.010708, 0.033081, 0.0199, 0.013365, -0.049776, -0.024593, 0.037183, -0.059185, -0.033034, -0.082648, -0.051082, -0.011112, -0.022965, 0.082457, -0.031499, 0.082153, 0.068979, 0.046753, -0.016227, 0.073926, 0.0606, 0.070905, -0.037076, -0.037028, -0.009335, 0.009383, -0.036358, 0.083562, -0.045985, -0.027577, -0.042756, 0.053987, -0.015786, 0.0039, 0.002802, -0.008193, 0.055457, 0.001805, 0.031887, -0.018394, -0.019132, -0.013288, -0.017759, 0.075113, 0.002179, 0.028745, -0.065958, 0.067536, 0.034431, -0.000787, -0.003597, 0.037126, -0.078908, 0.038574, 0.020738, 0.02015, -0.022434, 0.014085, -0.009719, -0.074353, 0.01077, -0.028893, -0.063277, -0.0, -0.034541, -0.070277, -0.01941, -0.005865, 0.025197, 0.156431, -0.007559, -0.010247, -0.017656, 0.143602, 0.005042, 0.009212, 0.025819, 0.01296, -0.00971, -0.007876, -0.002272, -0.197964, -0.02206, -0.039796, -0.022518, -0.032865, 0.007375, -0.003651, -0.0462, -0.005679, -0.053877, 0.004966, 0.024284, 0.092053, 0.022698, 0.004373, -0.056023, -0.000805, -0.045853, -0.01124, -0.048844, 0.054292, 0.060142, -0.035152, 0.073488, 0.012782, 0.007185, 0.053344, 0.046284, -0.038154, 0.002134, -0.022759, 0.018632, 0.004865, 0.007326, 0.072386, 0.065414, 0.088595, 0.060261, 0.038146, 0.006272, -0.009755, -0.043143, 0.096786, 0.053373, 0.038265, -0.018444, -0.088154]}),
             (:Book {_id: 'B3', title: 'To Kill a Mockingbird', author: 'Harper Lee', summary: 'Set in the racially segregated American South, young Scout Finch learns about justice, morality, and compassion as her father, Atticus, defends a Black man falsely accused of a crime. The novel critiques racial injustice and moral integrity.', summaryEmbedding: [-0.022685, 0.015848, -0.092268, -0.005805, -0.022488, 0.068271, 0.02367, -0.076058, 0.001692, 0.054104, -0.019726, 0.049662, -0.032534, -0.060678, -0.057997, 0.038616, -0.001378, -0.045663, 0.056475, -0.062887, -0.051291, -0.001839, 0.047033, 0.018193, -0.087559, -0.004835, 0.029741, 0.033604, -0.075808, -0.034328, -0.011623, 0.056132, -0.029609, 0.05784, -0.053374, -0.008421, 0.059536, 0.011486, 0.040402, -0.053378, 0.034115, 0.047713, -0.029198, 0.033163, -0.048845, -0.015496, 0.014193, 0.01629, 0.016696, -0.048943, -0.02624, -0.002712, -0.052129, 0.017977, 0.036515, 0.192931, 0.049121, -0.052412, -0.014696, -0.055299, 0.017556, -0.059171, -0.04358, -0.000374, 0.08837, 0.016388, -0.023403, 0.02679, 0.026857, -0.019931, 0.089695, 0.01848, 0.033951, -0.002633, -0.015978, 0.060431, -0.002146, -0.072816, 0.083049, -0.054542, -0.122107, -0.063148, -0.018241, 0.001507, -0.029217, -0.055296, 0.014008, -0.070861, 0.026001, 0.041461, 0.005675, -0.070044, 0.024955, -0.031703, 0.00496, 0.00298, -0.046805, -0.014339, -0.024775, 0.0036, 0.026304, 0.031486, 0.033874, -0.097939, 0.007877, -0.128841, 0.069143, -0.060687, -0.05836, 0.013264, 0.020339, -0.014861, -0.048052, 0.113456, 0.057867, -0.039831, 0.1082, -0.024683, -0.009688, 0.106214, 0.049241, 0.043009, -0.098569, 0.050751, -0.035511, -0.025629, -0.055357, -0.0, 0.000344, -0.040222, 0.00126, -0.05498, 0.094356, 0.01413, -0.000924, 0.000857, -0.036914, 0.024803, -0.05189, -0.039218, -0.027427, 0.05707, 0.022623, 0.043282, -0.060139, -0.031055, 0.007903, -0.055285, -0.052262, 0.08655, -0.068716, -0.102307, -0.022458, -0.005139, -0.008208, -0.001491, -0.03777, 0.02958, 0.018564, 0.078021, 0.018519, 0.001198, 0.054522, 0.024294, -0.031691, -0.00452, 0.028008, 0.055869, 0.014879, -0.007362, 0.017005, 0.023753, 0.047535, -0.041846, -4.3e-05, -0.072499, -0.002898, 0.095969, -0.007599, -0.045246, 0.017599, -0.099306, 0.012444, 0.020177, -0.012894, 0.048299, 0.034884, -0.01905, 0.027787, -0.089254, 0.02116, -0.025526, 0.131431, -0.022242, -0.014277, -0.063793, -0.075555, -0.071412, -0.020671, -0.000502, 0.052591, 0.014231, -0.114578, 0.061905, 0.080356, 0.035511, -0.006664, -0.099888, -0.038341, 0.053163, 0.004475, 0.050597, -0.060631, -0.087168, 0.031206, -0.038886, 0.049127, -0.006717, 0.03515, 0.019972, -0.063002, -0.050685, -0.033951, -0.0, -0.051403, -0.076823, -0.019102, -0.015079, 0.006799, -0.006192, -0.06391, 0.018134, 0.046867, 0.04254, -0.14006, 0.001749, 0.087653, 0.043973, 0.010296, -0.062619, 0.006579, 0.056982, 0.056944, 0.004014, 0.026428, 0.085596, 0.031212, -0.009975, 0.077334, -0.067559, 0.054914, -0.007478, -0.07235, 0.017259, 0.026155, 0.013296, 0.055108, 0.010877, -0.037271, -0.053544, 0.138026, -0.051412, 0.019886, -0.026173, 0.010775, 0.044069, -0.030083, -0.065359, 0.025701, -0.048204, 0.041498, 0.045431, -0.065991, -0.000544, -0.03375, -0.082099, 0.064499, 0.036706, 0.040195, -0.090202, 0.000224, -0.013191, 0.041538, 0.022912, -0.06631, 0.038736, -0.075775, 0.012915, 0.030208, -0.051127, -0.101145, -0.050251, 0.011345, -0.014097, -0.042367, -0.070446, -0.046517, -0.055846, -0.028637, 0.060218, -0.003596, 0.043566, -0.046985, 0.011142, 0.027758, -0.038324, -0.034962, 0.100388, 0.032007, 0.058802, 0.022879, 0.071764, 0.040747, 0.009099, 0.011572, -0.011558, -0.026943, -0.002484, -0.08566, -0.0, 0.001474, 0.034781, 0.018348, 0.047107, -0.003245, 0.093578, 0.002771, -0.052211, 0.006837, 0.099092, -0.090545, -0.076021, 0.099739, -0.053151, -0.004243, 0.003036, 0.078226, -0.021979, -0.037188, 0.087974, 0.052597, 0.091232, 0.084083, 0.01447, 0.008634, 0.004507, -0.041514, -0.074261, -0.052054, 0.060658, 0.011223, 0.134636, 0.075156, -0.001989, -0.086357, -0.040823, 0.065953, 0.10817, 0.076068, 0.011597, -0.021968, -0.014809, -0.009644, -0.044707, 0.013019, -0.01213, 0.01389, 0.038917, 0.010552, 0.005413, -0.023689, 0.034866, 0.02901, -0.035532, 0.040918, -0.019797, 0.00846, -0.031901, -0.01225, -0.050796, 0.1209, 0.048805, -0.049166, -0.012392]}),
             (:Book {_id: 'B4', title: 'The Great Gatsby', author: 'F. Scott Fitzgerald', summary: 'Jay Gatsby, a wealthy but mysterious man, throws lavish parties in an attempt to win back his lost love, Daisy Buchanan. Through the eyes of Nick Carraway, the novel explores themes of the American Dream, class, and the illusions of wealth.', summaryEmbedding: [-0.02481, -0.061498, -0.016459, 0.013824, 0.061165, 0.016651, 0.142201, -0.072818, 0.020808, -0.002779, -0.049229, 0.048879, 0.041182, -0.134283, -0.012917, -0.048263, -0.077979, -0.014902, 0.05853, 0.0264, -0.016752, 0.032369, -0.083641, -0.008015, -0.001195, -0.032516, 0.109321, -0.044194, -0.109634, 0.034549, 0.020258, 0.019063, -0.073458, 0.025434, -0.057394, 0.009432, 0.047803, 0.032902, -0.015933, -0.025801, -0.087016, -0.020839, 0.015638, 0.043783, 0.023102, -0.029874, -0.007379, -0.123993, 0.049499, -0.009779, 0.020158, 0.032399, -0.049439, -0.051735, 0.104907, 0.091621, 0.021406, 0.00272, 0.021135, 0.071739, 0.006356, -0.015859, 0.037401, -0.046381, 0.123268, 0.000124, -0.07015, 0.038322, -0.074761, 0.034271, 0.028509, 0.030658, -0.069122, -0.067256, -0.075874, -0.003074, -0.037567, 0.003349, -0.001743, 0.078347, -0.117151, -0.049647, 0.017345, -0.027313, -0.049133, -0.019061, -0.036887, -0.074609, -0.001043, 0.07469, -0.00765, -0.036249, 0.001913, 0.052002, -0.074449, -0.021182, -0.038632, -0.078172, -0.078873, 0.031107, 0.026107, 0.063358, 0.057954, -0.050606, 0.023983, -0.038648, 0.080144, 0.032675, -0.014176, 0.021173, -0.036661, -0.002756, -0.03222, 0.003514, 0.013504, 0.012299, -0.05979, -0.085184, -0.034601, 0.068569, 0.048107, 0.107345, -0.060121, 0.019972, -0.070312, -0.039605, 0.016218, -0.0, -0.010852, -0.026466, 0.061672, 0.041158, 0.004425, 0.078448, 0.020051, -0.006576, -0.05914, 0.011103, 0.00973, 0.034362, -0.089097, 0.01065, -0.009454, 0.056516, -0.136623, 0.002715, 0.103283, -0.003275, 0.015716, 0.080948, 0.017405, -0.069842, -0.051074, -0.080407, -0.05674, -0.063471, -0.034554, 0.021867, -0.053822, 0.057751, 0.052536, -0.008749, -0.081234, -0.115503, 0.007877, -0.020663, 0.039926, 0.040143, -0.079047, -0.000906, 0.033132, 0.055861, -0.071967, 0.086942, 0.14623, 0.065717, 0.037711, 0.0543, -0.038971, -0.064067, 0.011975, -0.02761, -0.020649, -0.018462, -0.055563, -0.054769, 0.032509, -0.098422, 0.097408, -0.025396, 0.101892, -0.050168, -0.034889, 0.089117, -0.002952, -0.102663, -0.027529, 0.040746, -0.02576, -0.028761, 0.03842, -0.011613, 0.016411, 0.064884, 0.052058, 0.051048, -0.051964, -0.051136, -0.013555, -0.030569, -0.008559, 0.029522, -0.030514, 0.029898, 0.054727, -0.087916, -0.054066, 0.030773, 0.034251, 0.009487, -0.074071, -0.098242, -0.062851, -0.0, 0.024773, -0.034948, 0.012849, -0.027455, 0.088715, -0.033244, -0.003161, -0.045451, 0.032735, 0.015709, -0.124888, 0.019781, 0.089965, -0.017727, 0.008002, -0.087125, 0.039819, -0.09049, 0.01425, -0.012974, 0.037084, 0.048912, 0.032509, -0.104437, 0.006037, -0.013321, 0.015617, -0.02299, -0.07817, -0.024479, 0.04568, 0.010375, -0.010518, 0.026609, -0.048428, -0.019848, 0.026159, -0.014288, -0.010499, -0.05043, -0.03114, -0.062367, 0.001141, 0.025411, -0.010856, -0.020467, -0.043565, 0.044189, 0.055517, 0.024321, 0.002447, 0.045537, 0.017321, 0.08497, -0.023826, 0.009052, 0.036428, 0.027111, 0.031905, 0.114385, -0.073044, 0.008308, -0.014239, 0.020909, 0.030084, -0.018945, 0.00614, 0.013544, 0.022179, 0.008652, -0.025928, -0.091711, 0.053577, 0.000107, -0.014363, 0.131351, 0.026427, 0.010441, 0.002405, 0.015217, 0.056033, 0.026832, 0.046974, -0.004158, -0.050433, 0.033239, -0.014378, 0.007379, 0.018452, 0.021353, -0.062961, -0.05227, 0.032829, -0.049616, -0.050346, -0.0, -0.067956, -0.03242, -0.016346, -0.034438, -0.039518, 0.065123, 0.029656, 0.028142, 0.008457, 0.091718, -0.015256, -0.039197, 0.079874, 0.031033, 0.031567, -0.058562, 0.124938, 0.006887, -0.024335, 0.045624, 0.067157, -0.005782, -0.009172, -0.037202, 0.002565, 0.087897, -0.005818, -0.027061, -0.015172, 0.128069, -0.008347, 0.017995, 0.002395, -0.013229, 0.011757, -0.02203, -0.05814, 0.064249, 0.022116, -0.033141, -0.007192, 0.017367, 0.031594, -0.0118, -0.025942, -0.013397, 0.077393, 0.055882, 0.06671, 0.089779, 0.059657, -0.001718, 0.04319, -0.018253, 0.027701, -0.094625, -0.031938, 0.047505, 0.020611, -0.02551, 0.020609, 0.012773, -0.040688, 0.028274]}),
             (:Book {_id: 'B5', title: 'Moby-Dick', author: 'Herman Melville', summary: 'Ishmael joins a whaling expedition led by the obsessed Captain Ahab, who is determined to hunt the white whale, Moby-Dick. The novel explores themes of fate, obsession, and the limits of human knowledge through rich symbolism and philosophical depth.', summaryEmbedding: [0.024986, 0.089268, 0.002462, 0.056911, -0.017491, 0.006182, 0.069281, -0.011298, -0.058844, 0.095656, -0.033212, -0.048018, 0.019251, 0.007835, -0.014317, 0.036393, 0.051647, -0.066298, 0.007904, -0.009003, 0.025912, 0.082135, -0.004169, -0.071499, -0.068779, -0.033475, 0.043288, -0.098509, -0.061247, -0.027778, 0.038296, -0.017489, 0.049383, 0.03766, -0.001323, 0.018727, 0.081769, -0.0149, 0.050969, -0.023185, 0.051637, 0.05853, 0.00913, 0.058257, -0.077568, -0.028462, -0.021934, -0.013313, 0.027687, 0.0052, -0.087602, -0.0663, -0.010015, -0.110712, 0.09007, -0.026897, 0.03675, -0.056516, 0.035419, -0.129894, 0.027267, -0.026057, 0.034729, 0.005644, 0.102603, -0.047904, -0.009344, 0.022349, -0.040942, 0.006883, 0.011361, 0.008611, -0.004154, -0.016876, -0.01313, -0.052067, -0.006183, -0.035464, 0.055621, -0.024267, -0.135943, -0.106936, -0.013493, 0.018449, 0.016532, 0.013576, -0.012736, -0.046021, -0.011444, -0.055291, 0.017749, -0.147933, -8.1e-05, -0.028001, -0.001052, 0.019796, -0.041573, 0.057494, -0.075127, 0.021072, 0.007211, -0.036711, -0.064611, -0.050708, -0.04879, -0.082788, -0.027285, -0.016139, 0.01136, -0.063803, -0.098311, -0.037908, 0.031846, 0.100425, 0.053012, 0.021356, 0.017865, -0.023734, -0.033644, -0.075537, 0.056319, 0.051129, 0.112451, 0.047294, -0.023279, -0.033195, 0.024845, -0.0, -0.001234, -0.051258, 0.00492, -0.007569, 0.042704, -0.002179, -0.0157, -0.007016, -0.03177, 0.001527, -0.005795, 0.035909, -0.006185, 0.119219, -0.042984, -0.051231, -0.003651, -0.033617, 0.030648, -0.046417, -0.014707, 0.054663, -0.005389, -0.026723, -0.043323, -0.064387, 0.004754, -0.037245, 0.022693, 0.089803, -0.051133, 0.020015, -0.057522, -0.014337, -0.057065, -0.031319, -0.091167, -0.00755, -0.0248, -0.094236, -0.003888, 0.019184, -0.050137, -0.022002, -0.073743, 0.108872, 0.066098, -0.021434, -0.01049, 0.054411, -0.036552, -0.021467, 0.060354, -0.064676, -0.007327, -0.002849, 0.058975, 0.044744, 0.031761, -0.042444, 0.011187, 0.005927, 0.012879, 0.099982, 0.058164, 0.050856, 0.091121, -0.052411, 0.025609, 0.068554, 0.00213, 0.039209, 0.03737, -0.00952, -0.109022, 0.022982, 0.027525, -0.003349, -0.098386, -0.044324, -0.030998, 0.025196, 0.012077, 0.001514, -0.050782, 0.010763, 0.102044, -0.073122, -0.001126, 0.029476, 0.060785, -0.033116, -0.042406, -0.072633, -0.01464, 0.0, 0.032076, -0.036369, 0.004868, -0.032269, 0.009427, -0.036844, 0.058991, 0.070871, -0.021884, -0.094925, -0.059264, -0.059758, 0.025842, 0.012715, 0.112768, -0.028522, 0.03887, 0.034485, 0.055494, -0.074663, 0.009614, -0.036765, -0.01732, -0.069716, 0.07336, 0.071665, -0.025984, 0.000679, -0.077052, -0.027983, -0.026014, 0.103975, 0.029391, -0.053237, -0.075429, 0.063725, 0.040997, 0.055177, 0.028118, -0.017124, -0.017628, -0.000664, -0.006777, -0.037269, -0.04876, 0.037831, -0.034018, 0.115962, -0.024095, -0.000249, -0.005647, 0.039172, 0.106592, -0.085204, 0.061715, 0.042662, -0.021477, -0.032446, 0.039852, 0.001872, -0.060029, -0.042848, 0.041087, 0.032727, -0.040228, 0.002983, 0.008411, -0.090762, -0.009637, 0.017465, -0.003444, -0.073146, -0.052097, 0.03692, 0.013062, 0.046833, -0.096567, 0.026681, -0.039308, 0.040154, -0.054448, -0.004534, 0.018972, 0.11418, 0.032343, 0.008066, -0.023917, 0.089204, 0.046101, -0.017465, -0.041015, -0.053506, -0.024774, 0.033292, 0.012615, -0.0, -0.051662, -0.056536, 0.075332, -0.014211, 0.06104, 0.095765, -0.035307, 0.009331, -0.016606, 0.097363, 0.009923, 0.018415, 0.013492, 0.092102, -0.010562, -0.030544, 0.076898, -0.085053, -0.010554, -0.012726, 0.014894, -0.003037, 0.030773, -0.049188, -0.023961, 0.114537, -0.051036, -0.08396, 0.048463, 0.04152, 0.017938, 0.05466, -0.012975, -0.009366, -0.041479, 0.06124, -0.020477, -0.003307, 0.027755, 0.058596, 0.021437, 0.142451, 0.078608, 0.080473, 0.05182, 0.009803, 0.018128, 0.022249, -0.039128, -0.051696, -0.045714, 0.024123, 0.036962, 0.030822, 0.007994, -0.077624, -0.068565, 0.010505, -0.028864, 0.056541, 0.185368, -0.006059, -0.011937, 0.007561]}),
             (:Book {_id: 'B6', title: 'Crime and Punishment', author: 'Fyodor Dostoevsky', summary: 'Raskolnikov, a destitute student in St. Petersburg, commits murder under the belief that he is above moral law. As guilt consumes him, he is drawn into a psychological battle with an investigator, ultimately finding redemption through suffering and confession.', summaryEmbedding: [-0.005746, 0.055988, -0.13981, 0.034377, 0.073211, -0.025192, 0.039414, 0.02614, 0.016537, 0.052656, 0.018935, 0.0347, -0.026677, 0.0725, -0.027476, -0.017418, -0.018498, 0.023923, -0.027701, 0.021797, -0.078968, -0.077619, 0.11921, -0.102545, 0.077975, 0.01584, 0.059991, -0.003676, -0.028952, -0.00785, -0.001603, -0.029296, 0.046073, 0.037007, 0.012328, 0.047972, -0.011646, 0.055175, -0.042309, 0.097293, -0.050229, 0.014376, 0.002547, 0.064158, -0.01945, -0.038625, -0.109628, -0.001013, 0.056956, -0.081477, -0.159172, 0.00953, -0.079107, 0.039161, -0.012838, -0.064483, 0.033846, 0.045292, -0.031192, -0.033835, 0.0777, 0.005205, -0.042888, -0.009348, -0.021094, -0.022319, 0.020205, 0.041475, -0.001329, 0.07305, 0.078324, -0.006299, -0.034242, -0.064566, -0.116704, -0.002941, 0.00896, 0.005175, 0.046975, 0.007779, 0.050727, -0.032339, 0.017511, -0.009087, -0.005941, -0.008464, 0.074875, -0.065548, 0.074677, 0.025667, -0.013692, -0.010992, 0.066441, -0.11594, -0.020848, 0.041044, -0.035696, 0.034047, -0.080847, 0.028601, -0.065866, -0.063303, 0.024242, -0.051987, -0.00394, 0.035361, -0.068607, -0.028621, -0.018264, -0.023659, -0.018068, 0.010826, -0.037121, 0.027646, 0.147516, 0.074995, 0.033555, 0.034059, -0.085895, 0.068073, 0.057082, 0.003678, -0.072365, 0.06514, -0.005044, -0.002203, -0.060674, 0.0, 0.003424, -0.030131, -0.05427, -0.083887, -0.021993, -0.024428, -0.042837, -0.001196, 0.009994, 0.117412, 0.021904, -0.044558, -0.049812, 0.048487, -0.067086, 0.100212, 0.00388, -0.01634, -0.064747, 0.081023, 0.089131, 0.024081, -0.012508, -0.001706, -0.11111, -0.047178, 0.022959, -0.017247, -0.008692, -0.002073, -0.025543, 0.02156, -0.02727, 0.030173, -0.042, 0.035403, -0.058783, -0.002002, 0.018528, 0.019429, -0.009486, -0.016824, -0.012513, 0.018614, 0.037413, -0.009725, 0.002309, -0.097262, 0.009947, 0.093972, -0.064316, -0.044598, 0.032113, 0.010113, -0.024806, 0.052718, -0.002825, 0.038685, 0.02499, -0.016412, 0.002405, -0.053559, -0.065159, -0.016558, -0.010882, -0.107866, 0.033846, -0.012336, 0.004257, -0.037368, -0.024805, 0.008619, -0.002165, -0.034263, -0.037685, -0.012282, -0.015092, -0.017186, 0.014866, -0.011953, -0.060926, 0.011058, -0.000645, 0.010369, -0.062733, 0.098853, -0.006584, -0.092125, 0.005484, 0.033885, -0.002268, -0.060514, 0.027181, -0.003506, -0.036113, -0.0, 0.056272, -0.065163, -0.056951, 0.028432, 0.013235, 0.010438, -0.029593, 0.018381, -0.06453, -0.015357, -0.003428, -0.076944, 0.040147, 0.160506, 0.046943, -0.079662, 0.068787, 0.0554, -0.094236, -0.023983, -0.001392, 0.078512, 0.006767, 0.029464, 0.045002, -0.011936, 0.114471, -0.01393, -0.121687, 0.051634, 0.023189, 0.053876, -0.01963, -0.026283, 0.046511, 0.028224, 0.140167, -0.016735, -0.092401, -0.005554, 0.0159, 0.006074, -0.047027, 0.031955, -0.036861, -0.073613, 0.016842, 0.150527, 0.084991, -0.128884, -0.049294, -0.003204, 0.021601, 0.039839, 0.002886, -0.009057, -0.036102, -0.040845, 0.020068, 0.033008, -0.034531, -0.072839, 0.018869, 0.093317, 0.0236, 0.071292, -0.023118, -0.039622, -0.049368, -0.010895, -0.012747, -0.028605, -0.012168, 0.02488, 0.006548, -0.014851, -0.027014, 0.022936, -0.015811, -0.066755, 0.084534, -0.116532, -0.042418, 0.064624, -0.044151, -0.042124, -0.01888, -0.072068, 0.038346, -0.049078, -0.025022, 0.008454, -0.007817, 0.014917, 0.02355, -0.0, 0.037923, 0.039917, -0.017496, -0.024757, 0.02151, 0.037723, -0.077877, -0.040243, -0.075173, 0.144728, -0.045712, 0.067646, 0.03741, 0.02065, 0.022836, 0.004735, 0.127762, 0.030299, 0.014688, 0.009962, 0.063411, -0.039163, 0.051119, -0.00729, 0.025761, 0.016705, -0.0045, 0.027566, 0.036776, 0.078343, -0.005368, 0.0873, 0.01514, 0.033563, 0.033052, -0.063143, 0.029269, 0.011762, -0.034033, -0.066038, 0.01368, 0.020722, 0.031004, -0.012194, -0.02145, -0.025953, 0.003065, -0.055487, 0.039679, 0.068359, -0.009597, 0.058518, -0.007604, 0.023715, 0.036578, -0.065714, 0.015161, 0.032566, -0.104722, -0.01596, 0.08477, -0.011824, 0.001901, -0.095109]}),
             (:Book {_id: 'B7', title: 'Brave New World', author: 'Aldous Huxley', summary: 'In a future society where pleasure, consumerism, and genetic engineering maintain stability, Bernard Marx questions the cost of happiness. When he introduces a \'savage\' to this world, the encounter exposes the dark side of a society that sacrifices individuality for order.', summaryEmbedding: [-0.017259, 0.103397, -0.044578, 0.057012, 0.031334, 0.022794, 0.034241, 0.022861, -0.022973, -0.002988, 0.026662, 0.011121, 0.007896, -0.016325, -0.067179, -0.015455, -0.02687, -0.027194, -0.021197, 0.040037, -0.066882, -0.024336, -0.019088, 0.022188, -0.093807, -0.045609, 0.059535, -0.029698, 0.003686, 0.004405, 0.05633, -0.017466, 0.100844, 0.010182, 0.017576, 0.002719, 0.051209, -0.040099, -0.011043, -0.02955, 0.034576, -0.0445, -0.104234, -0.007111, 0.013781, -0.008157, 0.040142, -0.048667, -0.035672, -0.054672, -0.048576, -0.063592, -0.034244, -0.069988, 0.004488, 0.021394, 0.095717, -0.014006, -0.013539, 0.038022, -0.013671, -0.038218, -0.018888, 0.002637, 0.182136, -0.004898, 0.026355, 0.082061, -0.160809, 0.063882, -0.002202, -0.054789, 0.02606, -0.021259, 0.019636, -0.039003, 0.008656, -0.031885, -0.01666, 0.043713, 0.061052, -0.049492, -0.091198, -0.011191, -0.034691, -0.047018, 0.027816, -0.033231, 0.124252, 0.040856, -0.106303, -0.028136, 0.019898, 0.01694, -0.031328, 0.063509, -0.036953, -0.012367, -0.045935, 0.013576, -0.036081, -0.000299, 0.050027, 0.002613, 0.009789, -0.100088, -0.060031, 0.045898, 0.005561, -0.023754, -0.086314, -0.031876, 0.062488, 0.011988, 0.083099, -0.048623, 0.002851, -0.019463, -0.008752, -0.058591, 0.039104, 0.017159, -0.006463, 0.067699, -0.02607, -0.010121, -0.031432, -0.0, -0.059153, -0.055743, -0.005979, 0.032122, -0.057076, 0.018289, -0.023364, -0.003988, -0.053989, 0.03556, -0.022213, -0.013591, 0.007464, 0.151852, -0.047806, -0.038157, -0.055994, 0.022578, 0.048228, 0.012102, -0.021222, 0.019579, 0.033437, -0.038491, -0.014621, 0.024808, 0.007354, -0.059838, 0.009424, -0.005229, -0.04259, 0.134666, -0.015073, -0.062844, 0.094071, 0.080422, -0.029047, 0.017782, -0.027375, -0.009948, -0.08347, 0.037524, -0.036121, -0.036947, 0.040124, 0.070759, 0.144785, -0.012351, -0.056183, 0.032976, -0.048213, 0.009762, 0.046677, -0.041434, 0.039932, -0.047815, -0.017547, 0.051449, -0.042486, -0.068182, -0.023444, -0.077995, -0.020526, -0.077629, 0.059145, 0.021055, -0.008027, -0.023492, -0.005272, 0.057566, 0.067111, 0.022477, -0.050164, -0.058129, -0.028983, 0.06934, -0.037777, 0.076068, -0.023604, -0.021174, -0.022995, 0.014497, -0.080644, -0.046228, 0.075724, 0.058318, 0.087946, -0.039721, 0.031617, 0.064175, -0.032576, -0.072969, 0.07993, 0.039232, -0.058019, -0.0, 0.001815, -0.062184, -0.091704, 0.063733, 0.034464, 0.003755, -0.107276, -0.016212, -0.038049, 0.109781, 0.052522, -0.035196, 0.096909, 0.064796, 0.041481, -0.066994, -0.004088, -0.031193, -0.016678, -0.020756, -0.017423, 0.097273, -0.064645, -0.007434, -0.046206, 0.063278, -0.0058, 0.019352, -0.01875, -0.038287, -0.131971, 0.069609, -0.026389, -0.007952, 0.094204, 0.114747, -0.02225, 0.045546, 0.022435, 0.02553, -0.02942, 0.043162, -0.014631, 0.038077, 0.022828, 0.02986, -0.038594, -0.040013, 0.053952, 0.075722, 0.066878, 0.048534, 0.017969, -0.007684, 0.000458, -0.058613, -0.000653, -0.051559, 0.01129, -0.001066, -0.099043, 0.00275, -0.011683, 0.072238, -0.036786, -0.028156, -0.025493, -0.0271, -0.015456, -0.004339, 0.024932, -0.064066, -0.017364, -0.06969, -0.091319, 0.010456, -0.01095, 0.098159, 0.034705, -0.010277, 0.009045, -0.06952, 0.096122, 0.012518, -0.091869, -0.070418, -0.06481, 0.009472, 0.049188, 0.036197, -0.052241, -0.072664, -0.04769, -0.0598, 0.040116, -0.0, -0.04121, -0.086154, -0.036936, 0.004692, 0.044768, 0.056503, 0.001971, -0.020422, -0.028664, 0.171012, 0.002293, 0.081149, 0.045766, 0.090965, -0.032764, 0.064438, -0.008772, -0.053547, -0.021336, 0.005231, 0.025296, 0.034145, 0.039741, -0.010729, -0.04986, 0.019436, -0.001679, -0.059775, -0.019667, 0.038212, 0.040332, 0.029997, -0.046977, -0.059819, 0.018583, -0.002212, -0.05785, 0.039357, 0.058167, 0.025605, 0.010614, 0.09199, -0.011093, 0.020555, 0.021215, -0.033353, -0.015415, 0.031244, -0.036662, 0.058039, -0.024264, -0.017294, 0.020135, -0.046477, 0.008696, -0.108873, 0.029367, 0.030776, -0.051613, 0.042767, 0.098425, -0.019779, 0.048419, -0.094105]}),
             (:Book {_id: 'B8', title: 'The Catcher in the Rye', author: 'J.D. Salinger', summary: 'Teenager Holden Caulfield narrates his journey through New York City after being expelled from prep school, revealing his struggles with identity, alienation, and the transition into adulthood. His cynical yet vulnerable perspective has resonated with generations of readers.', summaryEmbedding: [0.032516, -0.009188, 0.070708, -0.019265, 0.024578, 0.04688, 0.046333, -0.046068, -0.005468, -0.009286, 0.050508, -0.024029, -0.091306, 0.016981, -0.082689, 0.009934, -0.017832, -0.003675, -0.001866, 0.002027, -0.054152, -0.018572, -0.055326, 0.010868, 0.03393, 0.10297, 0.031146, 0.025373, -0.10103, 0.017887, 0.005652, 0.038809, -0.030148, 0.006738, 0.022013, 0.027957, 0.067862, 0.052333, 0.032198, -0.046697, -0.049901, 0.025845, -0.052898, 0.062259, -0.008954, -0.120789, -0.015074, -0.026156, 0.087438, -0.080062, -0.093308, -0.014656, 0.003864, 0.011168, -0.038792, 0.102395, 0.034344, 0.055851, 0.043417, -0.010732, -0.036203, -0.107561, 0.014454, 0.030576, 0.054101, -0.000634, -0.056048, 0.027261, -0.00961, 0.050651, -0.053551, 0.077111, 0.054687, -0.020911, -0.010324, 0.01064, -0.041549, 0.006844, 0.13777, -0.002886, 0.04313, -0.007095, -0.05359, 0.023936, -0.039793, -0.090577, 0.054861, -0.055177, 0.009262, 0.11014, -0.01926, -0.019301, -0.036056, 0.04318, -0.102316, -0.047716, 0.022808, 0.009633, -0.006712, -0.015204, 0.022175, 0.023645, 0.067269, 0.026089, -0.004237, -0.098668, -0.011476, -0.054106, -0.049758, 0.00528, 0.000898, -0.002572, -0.061696, 0.02992, 0.112779, 0.056855, 0.037696, -0.020957, -0.060573, 0.017309, 0.021296, 0.03497, -0.109468, 0.012613, -0.093845, -0.012833, 0.006813, 0.0, 0.01861, 0.025903, -0.010538, 0.095405, 0.053369, -0.030506, -0.004146, 0.085971, -0.022108, -0.05387, 0.030915, -0.004592, -0.053619, -0.091326, -0.022563, 0.046108, -0.108041, -0.058061, 0.064044, -0.0, 0.01255, 0.078234, -0.040699, -0.063814, -0.06923, -0.030468, -0.013631, -0.005722, -0.091977, 0.036681, -0.00338, 0.112093, -0.020484, -0.015726, 0.018899, -0.002446, 0.083236, -0.062863, 0.066971, -0.027222, -0.021017, -0.029076, 0.055889, -0.00695, 0.018233, 0.02785, 0.000561, -0.007028, 0.027473, 0.103516, 0.021181, -0.005933, -0.026229, -0.078342, -0.020563, 0.060083, -0.047893, -0.031141, 0.030236, -0.060851, 0.067715, 0.005657, -0.013435, 0.002945, -0.001535, -0.018559, 0.019184, -0.084974, -0.003402, 0.091859, -0.098081, 0.021993, -0.055955, 0.001308, -0.045453, 0.000735, -0.022333, -0.002646, -0.012392, -0.021156, -0.005981, 0.015047, -0.033866, 0.009798, 0.011691, -0.025041, 0.031571, -0.027014, 0.014956, 0.087836, 0.020295, -0.059869, -0.037173, -0.032808, -0.038437, -0.0, 0.130383, -0.097648, -0.01345, -0.024089, -0.007528, -0.010827, -0.029024, 0.047052, 0.089843, -0.021309, -0.09966, 0.037208, 0.138622, 0.039927, 0.00776, -0.017999, 0.041434, -0.019933, -0.104815, -0.07539, 0.071844, 0.051161, -0.111602, -0.01012, -0.022304, -0.05764, 0.07425, -0.025308, -0.109585, -0.014645, 0.118982, -0.030364, 0.074366, -0.036482, -0.093324, 0.025669, 0.03087, -0.016928, -0.034251, -0.008257, -0.000733, -0.088972, -0.014655, 0.028086, -0.045136, 0.014018, 0.004095, 0.073507, 0.006848, 0.122741, -0.036462, 0.048057, -0.003983, 0.063989, -0.000673, -0.020356, -0.031439, -0.049426, -0.06523, 0.046475, 0.009235, -0.00081, -0.130924, -0.087942, 0.033968, -0.0905, -0.131149, -0.082562, -0.006921, -0.006768, 0.031388, -0.02051, -0.047359, -0.014786, 0.02527, 0.003396, 0.00095, 0.006488, -0.041579, 0.02919, 0.093931, 0.013374, 0.013243, 0.052375, -0.042649, 0.041872, 0.007156, -0.012531, 0.017346, 0.000636, 0.087647, -0.043146, -0.081706, -0.072325, -0.03088, -0.0, -0.024789, 0.039127, -0.019309, -0.012856, -0.013551, 0.116218, 0.044275, 0.005258, 0.050627, 0.057412, -0.026978, -0.025628, 0.06918, 0.01821, -0.001116, 0.004494, 0.060615, -0.048426, -0.061664, 0.014049, -0.012403, 0.007233, -0.036198, 0.07537, -0.006816, 0.030819, -0.046416, -0.124791, -0.02238, 0.070236, -0.031736, 0.018288, 0.069545, 0.023002, -0.072263, 0.036903, 0.027269, 0.006707, 0.017548, -0.007912, 0.07548, -0.023146, -0.00237, 0.024605, -0.070593, 0.0289, -0.000821, 0.014243, 0.034212, 0.079833, 0.014773, 0.006133, 0.028424, 0.031948, 0.011631, -0.004776, -0.041419, 0.067557, -0.101373, 0.006203, 0.136539, 0.046626, -0.00234, 0.014882]}),
             (:Book {_id: 'B9', title: 'Frankenstein', author: 'Mary Shelley', summary: 'Victor Frankenstein, a scientist obsessed with creating life, brings a monstrous being to existence but abandons it in fear. The novel explores themes of scientific responsibility, the nature of humanity, and the consequences of unchecked ambition.', summaryEmbedding: [-0.046957, 0.065709, 0.006964, 0.074613, 0.034062, 0.013721, -0.005549, 0.029249, 0.000332, 0.013605, -0.087653, 0.000806, 0.030134, 0.025927, -0.132973, 0.013286, -0.08689, -0.024487, 0.018571, 0.013847, 0.017783, 0.01117, -0.017028, 0.002927, -0.041043, -0.008277, 0.070023, -0.071365, -0.070602, 0.020261, 0.028651, -0.012192, 0.050337, -0.067922, 0.065252, -0.048554, 0.058497, 0.003249, -0.017292, 0.004034, -0.061412, 0.006066, -0.048584, 0.082069, -0.037084, -0.073443, -0.072632, -0.02487, -0.001188, -0.05623, -0.093962, -0.098287, -0.023887, -0.123958, 0.059134, 0.056979, 0.054287, -0.005143, 0.009065, -0.084629, 0.100587, -0.015422, 0.005776, -0.021798, 0.102462, 0.043887, -0.003097, 0.025339, -0.099009, 0.086806, 0.034008, 0.004046, 0.088577, -0.063542, 0.130197, -0.102255, -0.067873, -0.01635, 0.067604, 0.04946, 0.02878, -0.034084, -0.022238, -0.032514, -0.010374, 0.009968, 0.054338, -0.0125, 0.039438, 0.076097, -0.104244, -0.173754, -0.00499, 0.028141, -0.081569, 0.096396, -0.03934, -0.015966, -0.012415, -0.030318, -0.033095, -0.018633, -0.018929, 0.043378, 0.077408, -0.019857, -0.032045, -0.024655, 0.003373, 0.074312, 0.007736, -0.029905, -0.002242, 0.063644, 0.082125, 0.047666, -0.037057, 0.024977, 0.014368, 0.092005, 0.067945, 0.068438, -0.083451, 0.061588, -0.010636, 0.008954, -0.009939, -0.0, 0.046386, -0.048714, 0.006538, 0.020605, 0.012755, -0.019373, -0.010894, 0.012077, 0.005244, 0.023393, -0.069603, -0.038577, -0.001455, 0.102321, -0.08288, -0.000323, -0.004269, 0.00415, 0.0508, 0.033135, -0.015115, -0.015371, -0.051328, -0.028962, -0.017519, -0.026, -0.074493, -0.018086, -0.00855, 0.02393, -0.012138, 0.033631, -0.041032, -0.046827, 0.006388, -0.019737, -0.079612, 0.011288, -0.023815, 0.073309, -0.026024, 0.094112, -0.04673, -0.014092, 0.042174, 0.040827, 0.082546, 0.017058, 0.005469, 0.039375, -0.038968, -0.006206, 0.054017, -0.03432, 0.032128, -0.016339, 0.011811, 0.001455, 0.010581, -0.086398, 0.034789, -0.017112, 0.011433, 0.033822, 0.086371, -0.027885, 0.042008, -0.000508, -0.025593, -0.00046, -0.083407, -0.042187, -0.013563, 0.023569, -0.03534, 0.02856, 0.064611, -0.058498, -0.059068, -0.040961, -0.004412, -0.048576, -0.003099, -0.100415, -0.015751, 0.012457, -0.031247, -0.062095, -0.027132, 0.087159, 0.023244, -0.099496, -0.000599, -0.008039, -0.099082, 0.0, -0.00197, -0.100289, -0.030447, -0.035856, -0.024363, 0.005893, -0.158863, 0.00279, 0.010152, 0.003433, -0.05904, -0.004651, 0.123386, 0.005394, 0.013287, -0.042991, -0.052677, -0.020915, -0.031895, -0.007524, -0.029103, 0.048246, -0.07186, -0.08467, -0.000752, 0.056677, 0.013265, 0.020505, -0.027982, 0.03428, -0.03972, 0.003048, 0.020467, -0.049868, 0.042837, 0.064849, 0.078438, -0.015103, 0.107605, 0.015397, -0.034365, -0.007836, -0.052174, 0.056569, 0.053367, 0.044222, 0.038088, 0.006299, 0.061455, 0.009697, -0.019882, 0.027669, 0.023709, -0.047638, -0.018196, -0.081687, -0.023736, -0.05436, 0.069259, 0.166616, 0.014344, 0.037047, -0.035921, 0.123174, -0.069315, 0.022176, -0.064132, 0.071471, 0.008736, 0.010309, -0.062187, -0.04786, -0.031875, 0.010754, -0.022127, -0.021731, -0.050632, 0.020045, -0.049533, 0.07435, 0.020031, -0.030537, 0.072515, 0.051656, 0.001765, -0.066195, -0.008856, 0.029652, -0.016023, 0.030355, -0.054704, -0.009417, -0.034567, 0.008769, 0.009084, -0.0, 0.092742, 0.006955, 0.007568, -0.044769, 0.024518, 0.015511, -0.035874, -0.063806, -0.068324, 0.087327, -0.061477, 0.016215, -0.029122, 0.093099, 0.046687, 0.014538, 0.093185, -0.037018, -0.061453, 0.010765, 0.092208, 0.0409, -0.017275, -0.083655, 0.012716, 0.016558, 0.023817, -0.043818, -0.061375, 0.067003, -0.023421, 0.103502, -0.033183, 0.001046, -0.054139, -0.008243, 0.045347, 0.019134, 0.004774, -0.074943, 0.061599, 0.08263, -0.040426, 0.010847, 0.001629, -0.042297, 0.048411, -0.016336, 0.015362, 0.025051, 0.030049, 0.005608, 0.021213, 0.017278, 0.00386, -0.00129, 0.025045, 0.038732, -0.112649, -0.068845, 0.091121, -0.008, 0.080029, -0.039866]}),
             (:Book {_id: 'B10', title: 'One Hundred Years of Solitude', author: 'Gabriel García Márquez', summary: 'Following the Buendía family across multiple generations in the fictional town of Macondo, this novel blends history, myth, and magical realism to explore themes of fate, solitude, and the cyclical nature of time.', summaryEmbedding: [0.026657, 0.028431, -0.032534, 0.056663, -0.022202, 0.038214, -0.007063, -0.097044, -0.024331, -0.042871, -0.00251, -0.01553, 0.04323, -0.108958, -0.037939, 0.044918, -0.02538, 0.022936, 0.015863, 0.027742, 0.034097, -0.021096, 0.024324, 0.119196, -0.073228, 0.006559, 0.093397, 0.018486, -0.077086, -0.066561, -0.061422, 0.083535, -0.017346, -0.049387, -0.001638, 0.014735, 0.012934, 0.054124, -0.018105, 0.008935, -0.008215, 0.013462, 0.006916, -0.057713, -0.036141, -0.076769, -0.01255, -0.042816, 0.033945, 0.011049, 0.012599, 0.006512, -0.013986, 0.011707, 0.011394, 0.138732, -0.090052, -0.001359, 0.047595, -0.031377, 0.048807, 0.015989, -0.040635, -0.000918, 0.049152, 0.006386, 0.014818, 0.06819, -0.012148, -0.115982, 0.081899, 0.009315, -0.008733, -0.010497, 0.055025, 0.063113, -0.065804, -0.046015, -0.054258, -0.10576, -0.030416, -0.030894, 0.052531, -0.0009, -0.078448, 0.002013, 0.083189, -0.036041, 0.044023, 0.002832, 0.011774, -0.039046, 0.005307, -0.024456, -0.024371, 0.04093, 0.013415, 0.002909, 0.030738, 0.046649, -0.015398, -0.013008, 0.077159, 0.028251, 0.03245, -0.077669, -0.002729, -0.031976, -0.024357, -0.040971, 0.019992, -0.036634, -0.002091, -0.000272, 0.032189, 0.027045, -0.000631, -0.048646, -0.005171, 0.045688, 0.083919, 0.078233, -0.07958, 0.019427, 9.8e-05, 0.017786, 0.064538, -0.0, 0.011291, 0.031707, -0.065485, 0.062288, 0.066205, 0.03635, -0.068279, 0.012186, -0.066348, -0.103788, -0.000231, 0.046946, -0.059594, -0.012265, -0.005379, 0.03138, -0.093309, 0.028483, 0.129385, -0.010616, -0.036748, 0.04558, -0.108451, -0.056888, -0.075547, 0.018319, -0.002528, 0.016778, 0.002166, 0.040355, 0.062555, 0.102585, -6e-05, -0.149261, 0.010235, 0.03125, 0.011882, -0.041834, -0.002033, 0.042827, -0.057175, -0.027426, -0.110007, 0.047332, -0.000561, -0.067093, 0.073731, -0.022006, 0.016884, 0.024503, -0.078724, -0.021635, -0.0234, 0.000914, -0.027096, 0.000546, -0.006549, -0.023952, 0.066146, 0.005767, 0.162328, 0.019604, 0.048126, 0.022859, 0.066474, -0.015293, 0.006383, 0.100716, 0.058188, -0.036845, -0.026259, 0.004199, 0.040034, 0.007741, -0.006, 0.03083, 0.016829, -0.018671, -0.063338, -0.016366, -0.052646, -0.035678, -0.024429, 0.059136, 0.047461, 0.003303, 0.057969, -0.068163, -0.095383, 0.001882, 0.062801, 0.057053, 0.041009, -0.070887, -0.064489, -0.0, 0.046044, -0.058527, 0.012656, -0.020662, 0.065134, -0.078622, -0.137736, 0.058991, -0.036417, -0.025577, -0.001395, -0.053878, 0.099823, -0.000594, 0.032634, -0.033411, 0.084393, -0.023813, -0.061469, 0.007068, -0.038479, -0.041105, -0.091287, -0.116455, 0.109362, 0.032847, -0.016454, 0.000362, -0.121496, 0.070174, -0.000928, -0.009022, 0.047538, 0.005848, -0.010767, 0.059154, 0.050466, -0.022684, 0.029563, -0.074714, -0.032717, -0.059118, -0.010511, -0.060255, -0.000631, 0.090146, 0.01357, 0.05687, 0.040539, -0.024013, 0.096113, 0.030667, 0.0207, -0.046447, 0.022878, -0.048885, 0.009639, -0.055045, -0.056503, 0.057068, -0.045769, 0.032228, -0.002691, 0.011516, -0.007624, 0.007416, -0.079591, -0.053043, -0.029711, -0.01563, -0.065008, -0.046114, -0.042554, -0.004175, -0.067101, 0.114811, 0.004281, -0.009707, -0.023001, 0.027512, -0.007294, -0.036965, 0.011704, 0.00298, -0.066851, 0.009078, -0.078874, 0.004576, 0.013394, 0.029089, -0.02249, -0.052906, -0.004407, -0.044846, 0.006333, -0.0, 0.081447, -0.018687, 0.007597, -0.033239, 0.009538, 0.013418, 0.045043, -0.052031, -0.062322, 0.056952, -0.032707, -0.013834, 0.053223, 0.068142, 0.051683, 0.024035, 0.150549, -0.024804, -0.037482, -0.018459, 0.021708, 0.00225, 0.061038, -0.057281, -0.018757, 0.038778, -0.048686, -0.073497, 0.098296, 0.001349, 0.099337, 0.037205, -0.004721, 0.068433, -0.018506, -0.041574, -0.063517, 0.100771, -0.093404, -0.085058, 0.122797, -0.036402, -0.04629, -0.001159, 0.054401, -0.06072, 0.074008, 0.051591, 0.009301, 0.019513, -0.057999, -0.015122, 0.074181, 0.053202, 0.052196, -0.000656, -0.006664, 0.027594, -0.028435, -0.004762, 0.018872, 0.074735, 0.010855, -0.005242]})
      

      Showing Vector Indexes

      To retrieve node vector indexes in the current graph:

      SHOW VECTOR INDEX ON NODE
      

      The information about vector indexes is organized into a _nodeVectorIndex table with the following fields:

      Field
      Description
      name Vector index name.
      schema The schema of the vector index.
      properties The property of the vector index.
      vector_server_name The vector server that hosts the vector index.
      status Vector index status, which can be DONE or CREATING.
      config Vector index configuration, including similarity_function, index_type, and dimensions.

      Creating a Vector Index

      You can create a vector index using the CREATE VECTOR INDEX statement for a node property of the list<float> or list<double> type. The vector index creation runs as a job, you may run SHOW JOB afterward to verify the success of the creation.

      To create a vector index named summary_embedding for the property summaryEmbedding of Book nodes:

      CREATE VECTOR INDEX "summary_embedding" ON NODE Book (summaryEmbedding) OPTIONS {
        similarity_function: "COSINE",
        index_type: "FLAT",
        dimensions: 384,
        vector_server: "vector_server_1"
      }
      

      Details

      • The vector index name must be unique. Naming conventions are:
        • 2 to 64 characters.
        • Begins with a letter.
        • Allowed characters: letters (A-Z, a-z), numbers (0-9) and underscores (_).
      • A vector index is applied to a single schema and a single property.
      • Configurations for a vector index:
      Item
      Type
      Default
      Description
      similarity_function String L2 The similarity function used to assess the similarity of two vectors. Supports L2, COSINE, and IP. Learn more
      index_type String FLAT The method used to organize and search the vectors in the index. Supports FLAT, IVF_FLAT, IVF_SQ8, IVF_PQ, HNSW, HNSW_SQ, HNSW_PQ, HNSW_PRQ, and SCANN. Learn more
      dimensions Integer 128 The dimensions of the vectors to be indexed. Only vectors of the configured dimension are indexed, and querying the index with a vector of a different dimensions will return an error.
      vector_server String / The name of the vector server that hosts the vector index.

      Dropping a Vector Index

      You can drop a vector index using the DROP VECTOR INDEX statement. Dropping a vector index does not affect the actual property values stored in shards.

      A property with a vector index cannot be dropped until the vector index is deleted.

      To drop the node vector index summary_embedding:

      DROP VECTOR INDEX "summary_embedding" ON NODE
      

      Using Vector Indexes

      You can use a vector index for vector search by calling the vector.queryNodes() procedure.

      Syntax

      CALL vector.queryNodes("<vectorIndexName>", <numMostSimNodes>, <targetVector>)
      

      Parameters

      Params
      Description
      vectorIndexName The name of the vector index to be used.
      <numMostSimNodes> Number of the nodes to retrieve that have the most similar vectors to <targetVector>. Note that the <targetVector> itself is included.
      <targetVector> The target vector.

      Returns

      • _uuid: _uuid of the retrieved node.
      • score: The similarity score between the vector of retrieved node and the target vector.

      Example

      Finds the top two books most similar to Pride and Prejudice by the vector index summary_embedding, return the book names along with the similarity scores between them:

      MATCH (target:Book {title: "Pride and Prejudice"})
      CALL vector.queryNodes('summary_embedding', 3, target.summaryEmbedding)
      YIELD result
      MATCH (book WHERE book._uuid = result._uuid)
      RETURN table(book.title, result.score)
      

      Result:

      book.title result.score
      Pride and Prejudice 1
      One Hundred Years of Solitude 0.396299
      The Great Gatsby 0.370970

      Annex: Index Types

      Index Type
      Description
      FLAT A brute-force method where all vectors are stored and compared directly. This method ensures accurate results, but it is computationally expensive and inefficient when dealing with large datasets.
      IVF_FLAT The IVF (Inverted File) method partitions the vectors into cluster units, and the search only takes place within the most relevant units. IVF_FLAT uses a FLAT approach within each unit, providing faster searches with a slight compromise on accuracy.
      IVF_SQ8 SQ8 (Scalar Quantization with 8-bit) uses scalar quantization to compress vectors in each unit into an 8-bit representation. It reduces storage requirements and increases search speed at the cost of slightly lower precision.
      IVF_PQ PQ (Product Quantization) compresses the vectors in each unit. Its index file is even smaller than IVF_SQ8.
      HNSW HNSW (Hierarchical Navigable Small World) is a graph-based indexing method that organizes vectors into a graph structure for fast approximate nearest neighbor search. It is highly efficient, especially for large datasets, and tends to outperform other methods in terms of search speed and recall.
      HNSW_SQ It combines the HNSW method with SQ (Scalar Quantization) to reduce memory usage while maintaining search efficiency.
      HNSW_PQ It uses PQ (Product Quantization) to enhance the HNSW method by compressing the vectors, resulting in a more memory-efficient structure with good performance.
      HNSW_PRQ It combines the benefits of HNSW_PQ with a re-ranking mechanism to improve accuracy after an initial fast search. This method ensures both speed and high precision.
      SCANN SCANN (Scalable Nearest Neighbor) is an advanced method developed by Google for efficient nearest neighbor search. It utilizes techniques like quantization and partitioning to provide extremely fast retrieval speeds, especially on very large datasets.
      Please complete the following information to download this book
      *
      公司名称不能为空
      *
      公司邮箱必须填写
      *
      你的名字必须填写
      *
      你的电话必须填写